96. 不同的二叉搜索树(困难)

给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

1
2
3
4
5
1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-binary-search-trees

思路1:

假设n个节点存在二叉排序树的个数是G(n),令f(i)为以i为根的二叉搜索树的个数,则
G(n) = f(1) + f(2) + f(3) + f(4) + … + f(n)

当i为根节点时,其左子树节点个数为i-1个,右子树节点为n-i,则
f(i) = G(i-1)*G(n-i)

综合两个公式可以得到 卡特兰数 公式
G(n) = G(0)G(n-1)+G(1)(n-2)+…+G(n-1)*G(0)

作者:guanpengchn
链接:https://leetcode-cn.com/problems/unique-binary-search-trees/solution/hua-jie-suan-fa-96-bu-tong-de-er-cha-sou-suo-shu-b/

思路2:

动态规划

这尼玛,谁能想出来,简直了

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public int numTrees(int n) {
int[] dp = new int[n+1];
dp[0]=1;
dp[1]=1;
for(int i=2;i<=n;i++){
for(int j=1;j<=i;j++){
dp[i] += dp[j-1]*dp[i-j];
}
}
return dp[n];
}
}

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
//代码超时
class Solution {
public int numTrees(int n) {
return count(1,n);
}
//递归,非dp
int count(int low,int high){
if(low>high){
return 1;
}
int res =0;
for(int i=low;i<=high;i++){
int left = count(low,i-1);
int right = count(i+1,high);
res += left*right;
}
return res;
}
}
//添加备忘
class Solution {
int[][] memo;
public int numTrees(int n) {
memo = new int[n+1][n+1];
return count(1,n);
}
//递归,非dp
int count(int low,int high){
if(low>high){
return 1;
}
if(memo[low][high]!=0){
return memo[low][high];
}
int res =0;
for(int i=low;i<=high;i++){
int left = count(low,i-1);
int right = count(i+1,high);
res += left*right;
}
memo[low][high] = res;
return res;
}
}