239. 滑动窗口最大值(一般)
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
示例:
输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]
解释:
1 | 滑动窗口的位置 最大值 |
提示:
你可以假设 k 总是有效的,在输入数组不为空的情况下,1 ≤ k ≤ 输入数组的大小。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/sliding-window-maximum
思路1:(作为2的补充理解)
遍历数组,将数存放在双向队列中,并用L,R来标记窗口的左边界和右边界。队列中保存的并不是真的数,而是该数值对应的数组下标位置,并且数组中的数要从大到小排序。如果当前遍历的数比队尾的值大,则需要弹出队尾值,直到队列重新满足从大到小的要求。刚开始遍历时,L和R都为0,有一个形成窗口的过程,此过程没有最大值,L不动,R向右移。当窗口大小形成时,L和R一起向右移,每次移动时,判断队首的值的数组下标是否在[L,R]中,如果不在则需要弹出队首的值,当前窗口的最大值即为队首的数。
示例
输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]
解释过程中队列中都是具体的值,方便理解,具体见代码。(最大值永远都是左边的元素)
初始状态:L=R=0,队列:{}
i=0,nums[0]=1。队列为空,直接加入。队列:{1}
i=1,nums[1]=3。队尾值为1,3>1,弹出队尾值,加入3。队列:{3}
i=2,nums[2]=-1。队尾值为3,-1<3,直接加入。队列:{3,-1}。此时窗口已经形成,L=0,R=2,result=[3]
i=3,nums[3]=-3。队尾值为-1,-3<-1,直接加入。队列:{3,-1,-3}。队首3对应的下标为1,L=1,R=3,有效。result=[3,3]
i=4,nums[4]=5。队尾值为-3,5>-3,依次弹出后加入。队列:{5}。此时L=2,R=4,有效。result=[3,3,5]
i=5,nums[5]=3。队尾值为5,3<5,直接加入。队列:{5,3}。此时L=3,R=5,有效。result=[3,3,5,5]
i=6,nums[6]=6。队尾值为3,6>3,依次弹出后加入。队列:{6}。此时L=4,R=6,有效。result=[3,3,5,5,6]
i=7,nums[7]=7。队尾值为6,7>6,弹出队尾值后加入。队列:{7}。此时L=5,R=7,有效。result=[3,3,5,5,6,7]
通过示例发现R=i,L=k-R。由于队列中的值是从大到小排序的,所以每次窗口变动时,只需要判断队首的值是否还在窗口中就行了。
解释一下为什么队列中要存放数组下标的值而不是直接存储数值,因为要判断队首的值是否在窗口范围内,由数组下标取值很方便,而由值取数组下标不是很方便。
作者:hanyuhuang
链接:https://leetcode-cn.com/problems/sliding-window-maximum/solution/shuang-xiang-dui-lie-jie-jue-hua-dong-chuang-kou-2/
思路2:
思路:滑动窗口应当是队列,但为了得到滑动窗口的最大值,队列序可以从两端删除元素,因此使用双端队列。队列第一个位置保存当前窗口的最大值。
注意队列存的是最大值下标
原则:对新来的元素k,将其与双端队列中的元素相比较
1)前面比k小的,直接移出队列(因为不再可能成为后面滑动窗口的最大值)
2)前面比k大的X,比较两者下标,判断X是否已不在窗口之内,不在了,直接移出队列
最标准的解法,因为k固定,且不用维护第二大第三大的值
回看记录200525
又看了一遍,滑动窗口,,用优先队列可以了解,但是双向队列的方法存储下标,不是很好能够了解关系,有点绕。
代码1:
1 | //这里是双向队列的解法,仅维护最大值即可O(n) |
代码2:
1 | /** |